5-Hydroxytryptamine 4(a) receptor is coupled to the Galpha subunit of heterotrimeric G13 protein.

نویسندگان

  • Evgeni G Ponimaskin
  • Jasmina Profirovic
  • Rita Vaiskunaite
  • Diethelm W Richter
  • Tatyana A Voyno-Yasenetskaya
چکیده

Serotonin (5-hydroxytryptamine (5-HT)) is an important neurotransmitter that regulates multiple events in the central nervous system. Many of the 5-HT functions are mediated via G protein-coupled receptors that are coupled to multiple heterotrimeric G proteins, including G(s), G(i), and G(q) subfamilies (Martin, G. R., Eglen, R. M., Hamblin, M. W., Hoyer, D., and Yocca, F. (1998) Trends Pharmacol. Sci. 19, 2-4). Here we show for the first time that the 5-hydroxytryptamine 4(a) receptor (5-HT(4(a))) is coupled not only to heterotrimeric G(s) but also to G(13) protein, as assessed both by biochemical and functional assays. Using reconstitution of 5-HT(4(a)) receptor with different G proteins in Spodoptera frugiperda (Sf.9) cells, we have proved that agonist stimulation of receptor-induced guanosine 5'-(3-O-thio)triphosphate binding to Galpha(13) protein. We then determined that expression of 5-HT(4(a)) receptor in mammalian cells induced constitutive- as well as agonist-promoted activation of a transcription factor, serum response element, through the activation of Galpha(13) and RhoA. Finally, we have determined that expression of 5-HT(4(a)) receptor in neuroblastoma x glioma NIE-115 cells cause RhoA-dependent neurite retraction and cell rounding under basal conditions and after agonist stimulation. These data suggest that by activating 5-HT(4(a)) receptor-G(13) pathway, serotonin plays a prominent role in regulating neuronal architecture in addition to its classical role in neurotransmission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5 - Hydroxytryptamine 4 ( a ) Receptor Is Coupled to the G Subunit of Heterotrimeric G 13 Protein

Serotonin (5-hydroxytryptamine (5-HT)) is an important neurotransmitter that regulates multiple events in the central nervous system. Many of the 5-HT functions are mediated via G protein-coupled receptors that are coupled to multiple heterotrimeric G proteins, including Gs, Gi, and Gq subfamilies (Martin, G. R., Eglen, R. M., Hamblin, M. W., Hoyer, D., and Yocca, F. (1998) Trends Pharmacol. Sc...

متن کامل

The G12 family of G proteins as a reporter of thromboxane A2 receptor activity.

Despite advances in the understanding of pathways regulated by the G12 family of heterotrimeric G proteins, much regarding the engagement of this family by receptors remains unclear. We explore here, using the thromboxane A2 receptor TPalpha, the ability of G12 and G13 to report differences in the potency and efficacy of receptor ligands. We were interested especially in the potential of the is...

متن کامل

Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain.

Numerous data showed that 5-hydroxytryptamine-1A (5-HT1A) receptors couple to Galpha(o)/alpha(i) proteins for signal transduction. However, the alpha subunit isoforms really involved in 5-HT1A receptor coupling in brain remain to be identified. Moreover, regional differences in the functional characteristics of brain 5-HT1A receptors have been evidenced repeatedly. Because such differences coul...

متن کامل

Localization of the mouse 5-hydroxytryptamine(1A) receptor in lipid microdomains depends on its palmitoylation and is involved in receptor-mediated signaling.

In the present study, we have used wild-type and palmitoylation-deficient mouse 5-hydroxytryptamine(1A) receptor (5-HT1A) receptors fused to the yellow fluorescent protein- and the cyan fluorescent protein (CFP)-tagged alpha(i3) subunit of heterotrimeric G-protein to study spatiotemporal distribution of the 5-HT1A-mediated signaling in living cells. We also addressed the question on the molecul...

متن کامل

G-protein alpha subunit isoforms couple differentially to receptors that mediate presynaptic inhibition at rat hippocampal synapses.

Presynaptic receptors that are coupled to heterotrimeric G-proteins are found throughout the brain and are responsible for modulating synaptic transmission. At least 10 G-protein-coupled receptors (GPCRs) reduce transmission in hippocampal neurons. Additionally, hippocampal neurons express up to 17 different Galpha, Gbeta, and Ggamma subunits, making for a striking array of possible heterotrime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 23  شماره 

صفحات  -

تاریخ انتشار 2002